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Reformulating the free-fermion pair correlation function, Dawson and March found an 
integral equation for an effective single particle potential, leading to a new approximation 
for interacting jellium. This equation is investigated within two regions: For r,c< 1 an 
exact solution can be found, for arbitrary densities numerical solutions are obtained. 
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1 INTRODUCTION 

An interesting new approach to determine the pair correlation function 
g ( r )  of isotropic jellium was developed by Dawson and March in 1984l. 
Starting from the non-interacting Fermi liquid, they found a possibility 
to express the free pair function in terms of the p-component of the free 
electron density matrix. By then introducing an effective single particle 
potential V(r) ,  the pair interaction was approximately taken into 
account within this framework. Finally, writing down g ( r )  as a linear- 
ized functional of V and combining this result with Poisson’s equation 
led them to a linear integral equation for V .  

In the present paper I shall first show that an exact solution for this 
equation can be found in the high density limit. Furthermore, the 
results of numerical calculations for arbitrary density values will be 
presented. A brief discussion of the resulting y(r) ends this paper. 
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2 CALCULATION SCHEME AND HIGH DENSITY SOLUTION 

Introducing the dimensionless variables x = k f r  and V ( r )  = 
Ryd.u(x)/x,  one can write down Eqs (4) and (8) of Ref. 1 as 

and 

u”(x) = -pr,.’i G,(x)jxmu(s)G2(s)ds + G,(x) u(s)G,(s)ds (2) s: I 
with 
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fi = 24a/n N 3.98062 

j , ( x )  and f i l ( x )  are the first-order spherical Bessel and Neumann 
functions, respectively; rs = a, 1(4nn)-’/3 denotes the usual density 
parameter. 

Since Eq. ( 2 )  is linear with respect to u(x), an additional normaliza- 
tion condition is required, in order to obtain a definite g(x) from Eq. (1). 
As the resulting y should satisfy Kimball’s relation’ 

g’(0) = arss(0)  (4) 
the combination of Eqs ( 1 )  and (4) leads to 

g(x) = yo(x) + CIr,[u’”(O) - 2arsu”’(0)] - ‘ u “ (x ) /x  ( 5 )  

u (x)  is now an arbitrarily normalized solution of Eq. (2) .  
Integrating twice, Eq. ( 2 )  can be rewritten as 

u(x) = ~ x m d s { s m d t  rhs[u; t3 + u’(co)x + u(00) (6) 

where rhs[u; t ]  stands for the right hand side of Eq. (2). Because V ( r )  
has to vanish as r + 03, u’(03) must be equal to zero. 

It can easily be shown that 

u”(x) = A r , x - ’ H ( x )  + O(r:) (7) 
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with 

~ ( x )  = ~,(x)S:G,(s)ds + G,(X) ( 8 4  

or, having carried out the integrals, 

H ( x )  = tG,(x){si(2x) - 2jl(2x)} (8b) 

solves Eq. (6) in the high density limit. (si and ci are the Sine and Cosine 
Integral, respectively; C denotes Euler’s constant.) Inserting the expan- 
sion 

x3 
- --- (z - x) 

36 

sin(2x) 
4x 

for x<< 1 

In(x) for x>> 1 

H(x) = (9) 

into Eq. ( 5 ) ,  one finds 

I n  1 
2 2  2 

g(0) = ~ - - cxr, + O(r:) N ~ - 0.8 I84r, + O(r:) (10) 

Comparing this result with the exact high-density expansion, obtained 
by Kimbal13 

( 1  1) g(0) = - 0.36584rs - 0.032966r.: ln(r,) + O(r:) 

an at least approximate conformity is found. 

3 NUMERICAL APPROACH 

Using Eq. (6) with u’(x + co) = 0, one can define the iteration scheme 
f r n  f o a  

uo(x)  = u(co) 

which proves itself converging very fast, especially in the metallic 
density range (2 < rs < 6). The resulting solutions u(x), normalized to 
u(0) = 1, are shown in Figure 1 for various r,-values. The correspond- 
ing results for g(r), obtained from Eq. (9, can be seen in Figure 2. 
Finally, the curves in Figure 3 compare g(r = 0; r,), calculated from Eqs 
(3) and (5 ) ,  with the Yasuhara r e ~ u l t . ~  
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Figure 1 Numerical solutions of Eq. (2) with the initial conditions u(0) = 1 and 
u’(x + co) = 0 for rs  = 0.1 (solid line), rr = 1 (dashed line) and rr = 10 (dash-dotted line). 
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Figure 2 The pair correlation function g(r)  versus kJr ,  calculated from Eq. (9, using 
u(x) from Figure 1. The curves are corresponding to the r,-values 0.1 (solid line), 1 
(dashed line) and 10 (dash-dotted line). 
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Figure 3 The pair correlation function g(r  = 0) versus rs from the present results (solid 
line) and the Yasuhara theory" (dashed line). 

4 CONCLUSION 

The numerical results as well as the high-density solution of the 
Dawson-March-approximation seem to confirm the at  least qualitative 
validity of their method. Although it is obvious from Figure 3 that 
y(0; I,>> 1) is decreasing too slowly within this approximation, one has 
to bear in mind that the derivation of Eq. (2) already contains a 
linearization step, which, on principle, is limiting the theory to the case 
r,<< 1. But even beyond that region this method provides a positive 
g(0; rs), which is still comparable to the results of some much more 
comprehensive theories5 A further improvement could probably be 
achieved by incorporating higher order terms in Eq. (2) ,  i.e. solving the 
full nonlinear model. In the present linearized theory, however, the 
calculation of g ( r )  can be carried out quickly enough, so that it might be 
of interest, to somehow combine this method with other approxima- 
tions, e.g. of the FHNC6 or pseudo~lassical~ type. In any case it should 
be the most important as well as comprehensive task to deepen the 
understanding of the many-body principles, which are causing the 
ansatz Eqs (1) and (2) to result in such a surprisingly realistic pair 
correlation function. 
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